
95-865 Unstructured Data Analytics

George Chen

Week 3: t-SNE, clustering

Isomap

Original high-dim. data

Low-dim. data

Build k-NN graph, 
computed shortest

distances

Compute Euclidean
distances between all pairs
of low-dimensional points

Distance table 
(for high-dim. points)

Distance table 
(for low-dim. points)

Make these two as
close as possible (Euclidean dist)

t-SNE 
(t-distributed stochastic

neighbor embedding)

t-SNE High-Level Idea #1
• Don't use deterministic definition of which points are neighbors
• Use probabilistic notation instead

0

0.05

0.1

0.15

0.2

A and B are "sim
ilar"

A and C are "sim
ilar"

A and D are "sim
ilar"

... D and E are "sim
ilar"

t-SNE High-Level Idea #2
• In low-dim. space (e.g., 1D), suppose we just randomly

assigned coordinates as a candidate for a low-dimensional
representation for A, B, C, D, E (I'll denote them with primes):

A'B'C' D'E'
• With any such candidate choice, we can define a probability

distribution for these low-dimensional points being similar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

t-SNE High-Level Idea #3
• Keep improving low-dimensional representation to make the

following two distributions look as closely alike as possible

0
0.05
0.1

0.15
0.2

A, B sim
ilar

A, C sim
ilar

A, D sim
ilar

... D, E sim
ilar

This distribution stays fixed

This distribution changes as we move around low-dim. points

t-SNE

Original high-dim. data

Low-dim. data

Technical detail: creates probabilities
based on Gaussian distribution

Technical detail: creates probabilities
based on Student’s t-distribution

Probability table 
(for high-dim. points)

Probability table 
(for low-dim. points)

Make these two as
close as possible

(Technical detail:
KL divergence)

Technical details are in separate slides (posted on webpage)

t-SNE

Low perplexity value High perplexity value

Emphasize
local structure

Emphasize
global structure

Also: play with learning rate, # iterations

In practice, often people initialize with PCA

Roughly: perplexity is like a
continuous version of
“number of nearest

neighbors”

Manifold Learning with t-SNE

Demo

t-SNE Interpretation

https://distill.pub/2016/misread-tsne/

Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course
webpage to a scikit-learn example using ~10 methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be
all that interpretable (you can scale axes, shift all points, etc)

Let’s look at images

(Flashback) Recap: Basic Text Analysis

• Represent text in terms of “features”  
(such as how often each word/phrase appears)
• Can repeat this for different documents: 

represent each document as a “feature vector”

☀☂☁☁☁☂☃☂☂☀"Sentence":

0

0.1

0.2

0.3

0.4

☀ ☁ ☂ ☃
Term

Frequency
0.2
0.3
0.4
0.1
[] This is a point in

4-dimensional
space, ℝ4

In general (not just text): first represent data as feature vectors
dimensions = number of terms

Example: Representing an Image

Image source: starwars.com

[]0
0: black
1: white

Go row by row and look at pixel values

[]
Example: Representing an Image

Image source: starwars.com

0

0: black
1: white

Go row by row and look at pixel values

0

…

[]
Example: Representing an Image

Image source: starwars.com

0

0: black
1: white

Go row by row and look at pixel values

0

…

0.9

…

[]
Example: Representing an Image

Image source: starwars.com

0

0: black
1: white

Go row by row and look at pixel values

0

…

dimensions = image width × image height
Very high dimensional!

0.9

…

0.3

Dimensionality Reduction for Images

Demo

Visualization

Many real UDA problems: 
The data are messy and it’s not

obvious what the “correct”
labels/answers look like, and

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels)
after “unsupervised” methods (don’t require labels)

Top right image source: https://bost.ocks.org/mike/miserables/

Example: Trying to
understand how people

interact in a social network

Important: 
Handwritten digit demo is a

toy example where we know
which images correspond to

digits 0, 1, … 9

is a way of debugging data analysis!

Let’s look at a structured dataset
(easier to explain clustering):

drug consumption data

Drug Consumption Data

Demo

Clustering Shows Up Often in Real Data!

To come up with clusters, we first need to define
what it means for two things to be “similar”

• Example: crime might happen more often in specific hot spots

• Example: users in a recommendation system can share
similar taste in products

• Example: students have different skill levels 
(clusters could correspond to different letter grades)

• Example: people applying for micro loans have a few specific
uses in mind (education, electricity, healthcare, etc)

Defining SimilarityThe Art of

�Yu , Yv �
�Yu��Yv�

Example: cosine similarity

• Also popular: define a distance first and then turn it into a
similarity

Example: Euclidean distance ∥Yu − Yv∥

Turn into similarity with decaying exponential
exp(−γ∥Yu − Yv∥)

γ > 0where

• There usually is no “best” way to define similarity

Example: Time Series
How would you compute a distance between these?

T

Yu Yv

Only observe time steps
between 0 and T

Example: Time Series

T

Yu Yv

How would you compute a distance between these?

Only observe time steps
between 0 and T

Distance could be defined
as the area of this purple

shaded in region

Example: Time Series

T

YuYv

How would you compute a distance between these?

One solution: Align them first

In practice: for time series, very popular to use "dynamic time warping"
to first align (it works kind of like how spell check does for words)

Is a Similarity Function Any Good?

Easy thing to check:

• Pick a data point

• Compute its similarity to all the other data points, and sort
them from most similar to least similar

• Inspect the most similar data points

If the most similar points are not interpretable, it's quite likely that
your similarity function isn't very good =(

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

We start here

We're going to start with
perhaps the most famous of

clustering methods
It won't yet be apparent what this method

has to do with generative models

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence:

k-means
Final output: cluster centers, cluster assignment for every point

Remark: Very sensitive to
choice of k and initial

cluster centers

Suggested way to pick initial cluster centers: “k-means++” method

How to pick k?
• Basic check: 

If you have
really, really
tiny clusters  
⇒ decrease k

• More details later

(rough intuition: incrementally add centers; favor adding center far
away from centers chosen so far)

When does k-means work well?

k-means is related to a more general model, which will help us
understand k-means

Gaussian Mixture Model (GMM)

What random process could have generated these points?

Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: heads or tails

Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: 2D point

Okay, maybe it's bizarre to think of it as a coin…

If it helps, just think of it as you pushing a button and
a random 2D point appears…

Gaussian Mixture Model (GMM)

We now discuss a way to generate points in this manner

Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable
point generated

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D
Gaussian distributions!

Quick Reminder: 1D Gaussian

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

This is a 1D Gaussian distribution

2D Gaussian

Image source: https://i.stack.imgur.com/OIWce.png

This is a 2D Gaussian distribution

Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable
point generated

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D
Gaussian distributions!

2D Gaussian distribution
2D Gaussian distribution

Key idea: Each Gaussian
corresponds to a different cluster

Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• One missing thing we haven't discussed yet:  
different mountains can have different shapes

(We've been
looking at d = 2)

2D Gaussian Shape
In 1D, you can have a skinny Gaussian or a wide Gaussian

In 2D, you can more generally have ellipse-shaped Gaussians

Less uncertainty More uncertainty

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/
homework/assign5/a52dgauss.jpg

Top-down view of an example 2D Gaussian distribution

Ellipse enables
encoding relationship

between variables

Can't have arbitrary
shapes

Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• Different mountains can have different ellipse shapes
(captures "covariance" information)

(We've been
looking at d = 2)

Example: 1D GMM with 2 Clusters

What do you think this looks like?

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.5

Probability of generating a
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.5

Probability of generating a
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

What do you think this looks like?

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5, std dev 1
 If tails: sample 1 point from Gaussian mean 5, std dev 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster 2 = 𝜋2

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇2

Gaussian std dev = 𝜎2

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 𝜋1)
2. If heads: sample 1 point from Gaussian mean 𝜇1, std dev 𝜎1

 If tails: sample 1 point from Gaussian mean 𝜇2, std dev 𝜎2

Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k
Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…

Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k
Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…

Example: 2D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k
Gaussian covariance = 𝛴k

How to generate 2D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…
2D point 2D point

2x2 matrix 2x2 matrix

GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k
Gaussian covariance = 𝛴k

How to generate points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…

High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

–George Edward Pelham Box

“All models are wrong, but some are useful.”

Photo: “George Edward Pelham Box, Professor Emeritus of Statistics, University of
Wisconsin-Madison” by DavidMCEddy is licensed under CC BY-SA 3.0

High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

• Learning ("fitting") the parameters of a GMM
• Input: d-dimensional data points, your guess for k
• Output: 𝜋1, …, 𝜋k, 𝜇1, …, 𝜇k, 𝛴1, …, 𝛴k

• After learning a GMM:
• For any d-dimensional data point, can figure out probability

of it belonging to each of the clusters
How do you turn this into a cluster assignment?

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence:

k-means
Step 0: Pick k

Step 1: Pick guesses for
where cluster centers are

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence:

(Rough Intuition) Learning a GMM
Step 0: Pick k

Step 1: Pick guesses for cluster probabilities, means, and
covariances

Step 2: Compute probability of each point belonging to each of the
k clusters

Step 3: Update cluster probabilities, means, and covariances
carefully accounting for probabilities of each point belonging to
each of the clusters

Repeat until convergence:

This algorithm is called the Expectation-Maximization (EM) algorithm
specifically for GMM's (and approximately does maximum likelihood)

(Note: EM by itself is a general algorithm not just for GMM's)

(often done using k-means)

Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g.,
in the 1D case it means they all have same std dev):

• k-means approximates the EM algorithm for GMM's

• Notice that k-means does a "hard" assignment of each point to
a cluster, whereas the EM algorithm does a "soft" (probabilistic)
assignment of each point to a cluster

Interpretation: We know when k-means should work! It should
work when the data appear as if they're from a GMM with true
clusters that "look like circles"

k-means should do well on this

But not on this

Learning a GMM

Demo

